#### Objectives

Develop neural network based model to read handwritten text from an image

- Train the model over IAM dataset
- Find the accuracy over a test set
- Check its result for a new input image

#### Introduction

Handwritten Text Recognition (HTR) systems are used to transcribe text contained in scanned images into digital text, an example is shown in Fig. 1. We will build a Neural Network (NN) which is trained on word-images from the IAM dataset.



Figure 1:Image of word (taken from IAM) and its transcription into digital text.

- Assumes text is color on white background
- Assumes that the image contains only the text
- Assumes that the text only contains characters as specified in the "charList.txt"
- Assumes that the input text is at most 32 characters long

# Handwritten Text Recognition

# Dushyant Chetiwal, Pallav Mathur, Tejas A. Mayekar, Ajay Meena

Indian Institute of Technology Goa

#### The approach

| Our model consists of convolutional NN (CNN) lay-<br>ers, recurrent NN (RNN) layers and a final Connec-<br>tionist Temporal Classification (CTC) layer.                                                                                                                                                                                                                                                                                                | Tł<br>89<br>Tł             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| • <b>CNN</b> : each CNN layer consists of three operation. The convolution operation, which applies a filter kernel to the input followed by the RELU function and then a pooling layer outputs a downsized version of the input.                                                                                                                                                                                                                      | th<br>da<br>W<br>wi<br>tic |
| <ul> <li><b>RNN</b>: the popular LSTM implementation of<br/>RNNs is used, as it is able to propagate<br/>information through longer distances and<br/>provides more robust training-characteristics than<br/>vanilla RNN.</li> <li><b>CTC</b>: while training the NN, the CTC is given<br/>the RNN output matrix and the ground truth<br/>text and it computes the loss value. While<br/>inferring, the CTC is only given the matrix and it</li> </ul> | th<br>If<br>tic<br>C       |
| decodes it into the final text.                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |

## Contributions

- Developed a model that (a) can capture properties of characters in pixels (b) use them to predict the characters from any new image
- Performed evaluation using test dataset.



## Graphical work flow

#### Inference

- 'he accuracy obtained on the test data set is around 0.38% for characters.
- 'his method for HTR is good enough for images nat are not too far from the format of our IAM ataset.
- Ve can use the model to scan simple pages of text ith proper line segmentation and word segmentaon algorithms.
- he destanting algorithm can be applied to increase ne accuracy for cursive texts.
- the text only contains words that are in the diclonary then implementing word beam search on the TC layer yields greater accuracy

#### **Experiments and analysis**

After each epoch of training, validation is done on a validation set (the dataset is split into 95% of the samples used for training and 5% for validation. Character error rate of model: 10.62%Word accuracy: 67.721739%

Epoch: 1 Train NN

[OK] "told" -> "told"

[ERR:2] "her" -> "nor"

. . .

Figure 3:A snippet from the console which shows training and validation.

database

• https://medium.com/@arthurflor23/text-segmentationb32503ef2613

A term project completed under the requirements of course CS 386: Artificial Intelligence (Instructor: Clint P. George)



```
> python main.py --train
Init with new values
Batch: 1 / 500 Loss: 130.354
Batch: 2 / 500 Loss: 66.6619
Batch: 3 / 500 Loss: 36.0154
Batch: 4 / 500 Loss: 24.5898
Batch: 5 / 500 Loss: 20.1845
Batch: 6 / 500 Loss: 19.2857
Batch: 7 / 500 Loss: 18.3493
Validate NN
Batch: 1 / 115
Ground truth -> Recognized
[OK] "," -> ","
[ERR:1] "Di" -> "D"
[OK] "," -> ","
[OK] """ -> """
[OK] "he" -> "he"
```

#### References

• http://www.fki.inf.unibe.ch/databases/iam-handwriting-

• https://towardsdatascience.com/build-a-handwritten-textrecognition-system-using-tensorflow-2326a3487cd5

# Acknowledgements

Figure 2:An overview of the model.